

Energy Audit City Of Kent Vehicle Maintenance Facility June 27, 2024

Table of Contents

Executive Summary	3
NTRODUCTION	4
FACILITY DESCRIPTION	5
ENERGY CONSUMPTION ANALYSIS	6
TABLE: MONTHLY NATURAL GAS CONSUMPTION	9
SUMMARY OF ENERGY SAVINGS	14
ENERGY CONSERVATION MEASURES (ECMs)	18
Appendix	19

Executive Summary

Greater Cleveland Partnership has completed an American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Level 2 Energy Audit of the City of Kent Vehicle Maintenance Facility at 590 PLUMB ST., KENT, OH 44240. The purpose of this energy audit is to identify cost effective Energy Conservation Measures (ECMs) to reduce energy consumption and greenhouse gas (GHG) emissions.

In the process of completing this audit, Greater Cleveland Partnership analyzed the facility's historical energy usage and completed a site visit to compile a detailed equipment inventory and schedule. From this data, Greater Cleveland Partnership identified ECMs, Operation & Maintenance Measures (OMMs), and Distributed and Renewable Measure (DRM).

Energy	Electricity (kWh)	Natural Gas (therms)	Site EUI	Total GHG Emissions (mtCO2e)
Baseline	26,438	2,381	33.52	39
Proposed	22,906	1,255	21.87	32
Reduction (%)	13.35%	47.29%	34.76%	17.95%

SUMMARY OF BASELINE & PROPOSED SAVINGS

Proposed Measure	Estimated Measure Cost (\$)	Annual Cost Savings (\$)	Simple Payback (yrs)	Estimated Energy Savings (kBtu)	Estimated GHG Savings (mtCO2e)	Estimated Electric Savings (kWh)	Estimated Gas Savings (therms)
Equipment Storage Roof Repair and Insulation Upgrade	8,500	507	16.7	112,600	5.97	-	1,126
Lighting Upgrade Total	3,400 11,900	424 931	8.0 12.8	12,051 124,651	1.72 7.69	3,532 3,532	- 1,126

Table 1: Existing Annual Energy Consumption and Proposed Savings

Introduction

Energy auditors from COSE conducted a comprehensive energy assessment on 6/11/24 at City of Kent Vehicle Maintenance Facility located at 590 Plumb ST., Kent, OH. The auditor was Robert Drennan.

The audited building systems included envelope, lighting, cooling, heating, domestic hot water, miscellaneous equipment, and operational/maintenance procedures.

The scope of this audit adheres to the guidelines developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) for a Level 2 audit. As described in ASHRAE's Procedures for Commercial Building Energy Audits, a Level 2 "Energy Survey and Analysis" will identify and provide the savings and cost analyses of all practical energy efficiency measures that meet the owner's/operator's constraints and economic criteria, along with the proposed changes to Operation and Maintenance (O&M) procedures.

A Level 2 audit includes a more detailed survey than a Level 1. Utility analysis is performed based on historical energy bills which may cover consumption data as well as peak demand. It may also provide a listing of potential capital-intensive improvements that require more thorough data collection and engineering analysis. Cost and savings analysis is performed for each measure recommended for implementation. This level of analysis should provide adequate information for the owner/operator to act upon recommendations for most buildings and for most measures.

Facility Description

The City of Kent Vehicle Maintenance Facility is a Repair Services (Vehicle, Shoe, Locksmith, etc) operated by the Client and has a total floor area of approximately 10,700 sq.ft.. The buildings were built in 1992 and is are 1-story structures. The facility is primarily Repair Services (Vehicle, Shoe, Locksmith, etc).

The City of Kent's Vehicle Maintenance Facility is comprised of two, fabricated metal buildings, one serving as a vehicle maintenance & repair facility and the other as a heavy equipment storage facility.

BUILDING ENVELOPE

Application	Name	R-Value	Comments
Wall	Metal framing and cladding	R-11	Est. R-Value

Application	Name	R- Value	Comments
			Large hole in ceiling of heavy equipment storage building has
	Metal framing	R-	broken the thermal barrier between the outdoor and indoor
Roof	and cladding	11/R-2	environments.

Application	Name	R-Value	Comments
Window	No significant window units installed	-	-

Tables: Construction

SPACE HEATING/SPACE COOLING/HVAC/AIR HANDLING (VENTILATION)

Name	Quantity	Location Name
VEHICLE MAINTENANCE / MAIN REPAIR BLDG / PLUMB ST.	3	Main
VEHICLE MAINTENANCE / EQUIPMENT STORAGE BLDG. / PLUMB ST.	3	Equip Storage
CARRIER / HEATING / M# CNPVP2414AL / S# 3320X37178 / R-410A / 80% /		
~2020	1	Main

Name	Quantity	Location Name
Waste Oil Furnace	1	Main Repair Building

DOMESTIC HOT WATER

Name	Quantity	Location Name
A.O. SMITH / NAT. GAS / M# GCVL 40 200 / S# 1049A019401 / 40 GALLON /		
MFG. 2010	1	Main

LIGHTING

Name	Quantity	Location Name	Watts (W)
100W LED	32	Main	100
2x4' 32W T8 Lamp, Elect Ballast	38	Equip Storage	58.88
150 WATT LED	7	Exterior	150

CONTROLS

The majority of the units are controlled by standard thermostats. The building temperature setpoints are often manually setback during unoccupied hours. Areas of the facility are not easily remotely monitored. In addition, the lack of ability to make program changes may result in longer operation of the equipment during unoccupied or lowly occupied periods.

PLUG LOADS

The plug load for the building is estimated based on the typical average plug load for warehouse buildings.

Energy Consumption Analysis

The historical energy usage at the City of Kent Vehicle Maintenance Facility was analyzed using utility data. This analysis of the building's energy use from January 2023 to December 2023. The information will be enhanced with the addition of Heating Degree Days (HDD) and Cooling Degree Days (CDD) to account for differences in weather across the reporting period. A summary of the facility's energy usage and expenses is shown in the table below.

	Electric Usage (kWh)	Electric Total Cost (\$)	Total Energy Use (kBtu)	Total Cost (\$)	Site EUI (kBtu/SqFt)	Total Cost Per Square Foot (\$/SqFt)
2023	26,330.21	1,133	281,017.68	2,507.72	26.26	0.23
Annual	26,330.21	1,133	281,017.68	2,507.72	26.26	0.23

Table: Energy Usage

ELECTRICITY CONSUMPTION

Electricity at the City of Kent Vehicle Maintenance Facility is provided by FirstEnergy. The monthly electricity consumption from January 2023 to December 2023 is displayed in the Table and Figure below.

	Electric Usage (kWh)		Electric Usage Cost (\$)
	2023	Average	2023	Average
Jan	2,373.5	2,373.5	102	102
Feb	2,460.2	2,460.2	105.83	105.83
Mar	2,382.5	2,382.5	102.37	102.37
Apr	2,165.67	2,165.67	93.4	93.4
May	2,055.83	2,055.83	88	88
Jun	2,080.2	2,080.2	89.4	89.4
Jul	2,294.37	2,294.37	98.6	98.6
Aug	2,320.07	2,320.07	100.17	100.17
Sep	2,191.87	2,191.87	94.1	94.1
Oct	2,026	2,026	87.13	87.13
Nov	2,013	2,013	87	87
Dec	1,967	1,967	85	85
Total	26,330.21	26,330.21	1,133	1,133

Table: Monthly Electrical Consumption

Electricity Consumption and Degree Days

Figure: Average Monthly Electrical Consumption and Monthly Degree Days

NATURAL GAS CONSUMPTION

	Natural Gas Usage (therms)		Natural Gas Usage Cost (\$)		
	2023	Average	2023	Average	
Jan	481.1	481.1	346.13	346.13	
Feb	314.2	314.2	226.1	226.1	
Mar	232.9	232.9	167.63	167.63	
Apr	153.27	153.27	110	110	
May	65.23	65.23	47.17	47.17	
Jun	14.1	14.1	10	10	
Jul	10.33	10.33	7.23	7.23	
Aug	10.33	10.33	7.23	7.23	
Sep	10	10	7	7	
Oct	51.33	51.33	37.23	37.23	
Nov	217	217	156	156	
Dec	352	352	253	253	
Total	1,911.79	1,911.79	1,374.72	1,374.72	

Natural Gas at the City of Kent Vehicle Maintenance Facility is provided by Dominion East Ohio.

Table: Monthly Natural Gas Consumption

Natural Gas Consumption and Degree Days

Figure: Monthly Natural Gas Consumption and Monthly Degree Days

UTILITY COSTS AND RATES

The energy cost savings calculations for the proposed ECMs are based on average annual electricity and natural gas costs for the period analyzed. For electricity and natural gas the blended rates will be used to determine the cost savings for ECM analysis.

Electricity Average Blended Rate: \$0.12 /kWh

Natural Gas Average Blended Rate: \$0.7191 /therms

Energy Use Intensity

You are able track building energy efficiency Key Performance Indicators (KPI) such as Energy Use Intensity (EUI). Facility managers can benchmark their facilities against similar types of building throughout the country using the EUI. The Site EUI is calculated by taking the facility's total annual energy usage normalized to kBtu and the square footage of the building. Source EUI considers losses in generation, storage, and distribution of the fuel type.

The table below shows key performance indicators for the facility, including the Energy Use Index EUI and the Energy Cost Index (ECI) based on the utility data provided.

	Site EUI (kBtu/SqFt)	Total Cost Per Square Foot (\$/SqFt)
2023	26.26	0.23
Average	26.26	0.23

Table: Normalized KPI

Energy End Use Breakdown

The table below outlines the energy end use breakdown of the City of Kent Vehicle Maintenance Facility into the end uses outlined by ASHRAE Standard 211/2018. This breakdown was estimated using data provided by the utilities, building operators/occupant interviews, and site visits.

End Use Breakdown by Fuel Type

Figure: Energy	/ & C	ost End-L	lse Breaka	down by	Fuel Type
----------------	-------	-----------	------------	---------	-----------

End Use	Electric Usage (kWh)	Natural Gas Usage(therms)	Total Use (kBtu)	Percentages
Space Heating	0	2,257*	225,747	68.7%
Space Cooling	116	-	394	0.1%
Air Distribution	4,736	-	16,160	5%
SHW/DHW	0	124	12,400	3.8%
Lighting	15,368	-	52,435	16%
Plug Load	6,218	-	21,215	6.4%
Total	26,438	2,381	328,351	100%
Historical Billing	26,330	1,910	280,838	-
Actual	100%	125%*	117%	-

Table: Energy End-Use Breakdown

*Please note that the heating usage in the chart above for this building is estimated. This load is based on the gas usage metered for the building and an adjustment for other heating sources. The actual heating on this site is provided by both natural gas heating and waste oil heating. There is a waste oil furnace in use in the Main repair facility. This furnace uses waste oil from vehicle maintenance to provide heating. There is no metering available for the actual amount of waste oil burned. The gas heat usage in the chart is higher than actual usage in the chart because that oil usage has been estimated and the additional heating BTUs are shown in the heating usage.

Electricity & Natural Gas End-Use Breakdown

Figure: Electricity End-Use Breakdown and Natural Gas End-Use Breakdown

End Use Breakdown by End Use

Figure: Total Energy End-Use Breakdown

Summary of Energy Savings

If all ECMs are implemented, the facility can expect to reduce electricity consumption by 13% and natural gas consumption by 47%. This would produce an annual operational savings on the order of 3,532 kWh and 1,126 therms for a combined \$931 of utility and O&M expenditure reduction. The full implementation cost of these projects is estimated at \$11,900, yielding a simple payback of 12.8 yrs. The following table depicts expected savings figures for this facility:

ENERGY SAVINGS BY END USE

End Use	Electricity (kWh)	Electricity Savings (kWh)	Natural Gas (therms)	Natural Gas Savings (therms)	Total Existing Energy Consumption (kBtu)	Total Proposed Energy Consumption (kBtu)	% Reduction
Space							
Heating	0	-	2,257	1,126	225,747	113,147	49.9%
Space							
Cooling	116	0	-	-	394	394	0%
Air							
Distribution	4,736	0	-	-	16,160	16,160	0%
SHW/DHW	0	0	124	0	12,400	12,400	0%
Lighting	15,368	3,532	-	-	52,435	40,384	23%
Plug Load	6,218	0	-	-	21,215	21,215	0%
Total	26,438	3,532	2,381	1,126	328,351	234,061	28.7%

Table: Energy Savings Breakdown by Usage

Figure: Energy Saving End-Use by Usage

Key Performance Indicators

Energy	Electricity (kWh)	Natural Gas (therms)	Site EUI	Total GHG Emissions (mtCO2e)
Baseline	26,438	2,381	33.52	39
Proposed	22,906	1,255	21.87	32
Reduction (%)	13.35%	47.29%	34.76%	17.95%

Table: KPI

Site Energy Use Intensity

Figure: Site EUI Reduction

Figure: GHG Reduction

Energy Conservation Measures (ECMs)

Equipment Storage Roof Repair and Insulation Upgrade

The equipment storage building sustained water damage that resulted in a large portion of the ceiling having to be removed thus breaking the thermal boundary between the conditioned space below and the unconditioned attic area.

The repair of the open ceiling section(s) (after the source of the moisture intrusion has been sealed) should be done by:

1.) Closure of the hole and air-sealing of the joints between the new and existing ceiling board

2.) Reapply insulation to match the existing insulation level which appeared to be batts of R-13 fiberglass

3.) Being that insulation work is already being done to this new section, it's recommended to take advantage of the situation and apply a level of "blown-in cellulose" insulation on top of the existing batt insulation aiming for an overall R-30 level of thermal resistance.

Name	Energy	Electric	Natural Gas	Estimated GHG	Effective
	Savings	Savings	Savings	Savings	Useful Life
	(kBtu)	(kWh)	(therms)	(mtCO2e)	(years)
Equipment Storage Roof Repair and Insulation Upgrade	112,600	-	1,126	5.97	-

Total Measure Cost (\$)	8,500	ROI (%)	6
Annual Cost Savings (\$)	507	NPV (\$)	-3,968
Simple Payback (yrs)	16.8		

Lighting Upgrade

Upgrade the fluorescent T8 fixtures to LED fixtures.

Name	Energy Savings (kBtu)	Electric Savings (kWh)	Natural Gas Savings (therms)	Estimated GHG Savings (mtCO2e)	Effective Useful Life (years)
Lighting					
Upgrade	12,051	3,532	0	1.72	0

Total Measure Cost (\$)	3,400	Simple Payback (yrs)	8
Estimated Incentive (\$)	0	ROI (%)	12.5
Annual Cost Savings (\$)	424	NPV (\$)	390

Appendix

Lighting Table

Name	Quantity	Location Name	Watts (W)	Control type
100W LED	32	-	100	Main
2x4' 32W T8 Lamp, Elect Ballast	38	-	58.88	Storage
150 WATT LED	7	-	150	Exterior

Definitions

AHU	Air Handling Unit	OAT	outside air temperature
Btu	British thermal unit	EUI	Energy Use Intensity
Btu/h	British thermal unit per hour	ECI	Energy Cost Index
CDD	Cooling Degree Days	w	watt
DD	Degree Days	MMBtu	One million Btu
HDD	Heating Degree Days	kW	kilowatt
cfm	cubic feet per minute	kWh	kilowatt-hour
CBECS	Commercial Buildings Energy Consumption Survey	KPI	key performance indicator
DHW	domestic hot water	CO2e	carbon dioxide equivalent
ECM	energy conservation measure	MBH	1,000 British thermal unit per hour
gal	gallon	VFD	Variable Frequency drive
GHG	greenhouse gas		
gpm	gallons per minute		
FY	fiscal year		
hp	motor horsepower		
AC	air conditioner		
HV	heating and ventilation		
kBtu	1,000 Btu		
COP	coefficient of performance		
EER	energy efficiency ratio		
нพ	hot water		
FY	fiscal year		
SF	square feet		