

**Energy Audit** City of Kent: Police Department July 6, 2024

### Table of Contents

| Executive Summary                      | 3  |
|----------------------------------------|----|
| NTRODUCTION                            | 4  |
| FACILITY DESCRIPTION                   | 5  |
| ENERGY CONSUMPTION ANALYSIS            | 7  |
| TABLE: MONTHLY NATURAL GAS CONSUMPTION | 9  |
| SUMMARY OF ENERGY SAVINGS              | 14 |
| ENERGY CONSERVATION MEASURES (ECMs)    | 18 |
| Appendix                               | 20 |

# **Executive Summary**

Greater Cleveland Partnership has completed an American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Level 2 Energy Audit of the City of Kent: Police Department at 301 S. Depeyster St., Kent, OH 44240. The purpose of this energy audit is to identify cost effective Energy Conservation Measures (ECMs) to reduce energy consumption and greenhouse gas (GHG) emissions.

In the process of completing this audit, Greater Cleveland Partnership analyzed the facility's historical energy usage and completed a site visit to compile a detailed equipment inventory and schedule. From this data, Greater Cleveland Partnership identified ECMs, Operation & Maintenance Measures (OMMs), and Distributed and Renewable Measure (DRM).

| Energy        | Electricity (kWh) | Natural Gas (therms) | Site EUI | Total GHG Emissions (mtCO2e) |
|---------------|-------------------|----------------------|----------|------------------------------|
| Baseline      | 488,374           | 9,757                | 78.72    | 415                          |
| Proposed      | 426,559           | 9,757                | 72.44    | 385                          |
| Reduction (%) | 12.66%            | 0%                   | 7.98%    | 7.23%                        |

#### SUMMARY OF BASELINE & PROPOSED SAVINGS

| Proposed<br>Measure | Estimated<br>Measure<br>Cost (\$) | Annual<br>Cost<br>Savings<br>(\$) | Simple<br>Payback<br>(yrs) | Estimated<br>Energy<br>Savings<br>(kBtu) | Estimated<br>GHG<br>Savings<br>(mtCO2e) | Estimated<br>Electric<br>Savings<br>(kWh) | Estimated<br>Gas<br>Savings<br>(therms) |
|---------------------|-----------------------------------|-----------------------------------|----------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|
| Add Air             |                                   |                                   |                            |                                          |                                         |                                           |                                         |
| Evidence            |                                   |                                   |                            |                                          |                                         |                                           |                                         |
| Room                | 4,000                             | -580                              | NA                         | -16,514                                  | -2.36                                   | -4,840                                    | -                                       |
| Add Solar           | 103,200 or                        |                                   |                            |                                          |                                         |                                           |                                         |
| Photovoltaic        | 72,240                            |                                   |                            |                                          |                                         |                                           |                                         |
| (PV) System         | after                             |                                   |                            |                                          |                                         |                                           |                                         |
| to Building         | incentive                         | 6,804                             | 10.5                       | 193,460                                  | 27.63                                   | 56,700                                    | -                                       |
| Variable            |                                   |                                   |                            |                                          |                                         |                                           |                                         |
| Frequency           |                                   |                                   |                            |                                          |                                         |                                           |                                         |
| Drives (VFD) -      |                                   |                                   |                            |                                          |                                         |                                           |                                         |
| Pumps               | 2,000                             | 1,195                             | 1.7                        | 33,966                                   | 4.85                                    | 9,955                                     | -                                       |
| Total               | 109,200                           | 7,419                             | 10.5                       | 210,912                                  | 30.12                                   | 61,815                                    | -                                       |

Table 1: Existing Annual Energy Consumption and Proposed Savings

## Introduction

Energy auditors from COSE conducted a comprehensive energy assessment on 6/11/24 at City of Kent: Police Department located at 301 S. Depeyster St., Kent, OH. The auditor was Norm Stickney, who was accompanied onsite by Robert Drennan.

The audited building systems included envelope, lighting, cooling, heating, domestic hot water, miscellaneous equipment, and operational/maintenance procedures.

The scope of this audit adheres to the guidelines developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) for a Level 2 audit. As described in ASHRAE's Procedures for Commercial Building Energy Audits, a Level 2 "Energy Survey and Analysis" will identify and provide the savings and cost analyses of all practical energy efficiency measures that meet the owner's/operator's constraints and economic criteria, along with the proposed changes to Operation and Maintenance (O&M) procedures.

A Level 2 audit includes a more detailed survey than a Level 1. Utility analysis is performed based on historical energy bills which may cover consumption data as well as peak demand. It may also provide a listing of potential capital-intensive improvements that require more thorough data collection and engineering analysis. Cost and savings analysis is performed for each measure recommended for implementation. This level of analysis should provide adequate information for the owner/operator to act upon recommendations for most buildings and for most measures.

# **Facility Description**

The City of Kent: Police Department is a Police Station operated by the Client and has a total floor area of approximately 33,561 sq.ft.. The building was built in 2018 and is a 2-story structure. The facility is primarily a Police Station. The City of Kent's Police Station serves as a 24-hour public safety facility. The building was designed with energy performance and operation as a priority.

#### **BUILDING ENVELOPE**

| Application | Name                                                                   | R-<br>Value | Comments         |
|-------------|------------------------------------------------------------------------|-------------|------------------|
| Wall        | Metal framing a combination of concrete & cement fiber board cladding. | R-8         | Est. R-<br>Value |

| Application | Name                                                               | R-<br>Value | Comments |
|-------------|--------------------------------------------------------------------|-------------|----------|
|             | Flat, reflective/white, thermoset/thermoplastic cover over metal   |             |          |
|             | sublayer. Reflective roofing and thermoset design results superior |             | Est. R-  |
| Roof        | thermal properties to reduce heat loss/gain.                       | R-25        | Value    |

| Application | Name                                              | R-Value | Comments     |
|-------------|---------------------------------------------------|---------|--------------|
| Window      | Double paned with thermal breaks and slight tint. | R-4     | Est. R-Value |

Tables: Construction

### PRIMARY SPACE HEATING/SPACE COOLING/HVAC/AIR HANDLING (VENTILATION)

|                                                               |          | Location    |
|---------------------------------------------------------------|----------|-------------|
| Name                                                          | Quantity | Name        |
| CARRIER AHUS                                                  | 4        | Various     |
| LOCHINVAR (1) / CREST CONDENSING / NAT. GAS / M# FBN1001 / S# |          |             |
| 1650104249795 / BTU-IN 1,000,000 : BTU-OUT 960K / 2016        | 1        | Boiler Room |
| LOCHINVAR (2) / CREST CONDENSING / NAT. GAS / M# FBN1001 / S# |          |             |
| 1650104249798 / BTU-IN 1,000,000 : BTU-OUT 960K / 2016        | 1        | Boiler Room |
| CARRIER 30RAP AIR COOLED CHILLERS                             | 3        | Roof        |
| ERV (associated w/ AHU4)                                      | 1        | Roof        |

| Name                                             | Quantity | Location Name |
|--------------------------------------------------|----------|---------------|
| CHW PUMP TACO 5HP                                | 2        | MER           |
| HW PUMP TACO 3HP                                 | 2        | MER           |
| Chiller Pump 1.5 HP                              | 3        | MER           |
| GEN. LG / SMART INVERTER Indoor Unit             | 4        |               |
| LG / SMART INVERTER / M# LSU090HSV4 Outdoor Unit | 1        |               |

#### DOMESTIC HOT WATER

| Name                                                                                  | Quantity | Location<br>Name |
|---------------------------------------------------------------------------------------|----------|------------------|
| A.O. SMITH (1) / M# BTH-150A300 / S# 1722106329248 / NAT. GAS / 100<br>GALLON / ~2022 | 1        | MER              |
| A.O. SMITH (2) / M# BTH-150A300 / S# 1718106055336 / NAT. GAS / 100<br>GALLON / ~2022 | 1        | MER              |

#### LIGHTING

| Name | Quantity | Location Name | Watts (W) |
|------|----------|---------------|-----------|
| 30W  | 234      | Various       | 30        |
| 30W  | 234      | Various       | 30        |

#### LIGHTING AND LIGHTING CONTROL

The interior and exterior lighting fixtures are all energy efficient LED fixtures. For the purpose of this report, the number of fixtures were estimated based on estimated lighting power density(LPD) for the space. The fixture counts in the report are estimated to provide a baseline usage. Many areas in the facility have occupancy based lighting controls that reduce the lighting usage during lower occupied periods.

#### **HVAC AND CONTROLS**

The main HVAC system includes 4 VAV air handlers. The building also has a ERV to recovery energy from the exhaust of the section served by AHU4. The air handlers are provided chilled water by air cooled chillers and hot water by high efficiency condensing boilers.

The majority of the units are controlled by Alerton DDC controls. The DDC controls in the facility have been upgraded in the last 4 years to provide better response and maintainability. The HVAC controls are programmed to effectively optimize energy use throughout the building. The building is a 24x7 operation but areas that are less occupied have some automated controls including CO2 control and occupancy controls. Most areas that are not occupied 24x7 are setback or controlled by a form of occupancy control.

#### PLUG LOADS AND MISC LOADS

The report estimated the plug load and miscellaneous loads for the facility. The 2018 CBECS data for Public Order and Safety buildings was used as a reference. The plug loads are significant due to the nature of the operation and the 24 hour occupancy.

### **Energy Consumption Analysis**

The historical energy usage at the City of Kent: Police Department was analyzed using utility data. This analysis of the building's energy use from January 2022 to December 2023. The information will be enhanced with the addition of Heating Degree Days (HDD) and Cooling Degree Days (CDD) to account for differences in weather across the reporting period. A summary of the facility's energy usage and expenses is shown in the table below.

Note that for the energy use breakdown, the gas usage for hot water reheat usage is combined with the domestic hot water and service hot water usage. The non heating gas usage is difficult to define individually because it is unrelated to HDD based analysis.

|         | Electric<br>Usage (kWh) | Electric<br>Total Cost<br>(\$) | Total Energy<br>Use (kBtu) | Total Cost<br>(\$) | Site EUI<br>(kBtu/SqFt) | Total Cost Per<br>Square Foot<br>(\$/SqFt) |
|---------|-------------------------|--------------------------------|----------------------------|--------------------|-------------------------|--------------------------------------------|
| 2022    | 477,855.12              | 39,662.34                      | 2,605,101.67               | 46,094.28          | 77.62                   | 1.37                                       |
| 2023    | 476,929.89              | 39,585.66                      | 2,661,923.78               | 46,412.72          | 79.32                   | 1.38                                       |
| Average | 477,392.51              | 39,624                         | 2,633,512.72               | 46,253.5           | 78.47                   | 1.38                                       |

Table: Energy Usage

### **ELECTRICITY CONSUMPTION**

Electricity at the City of Kent: Police Department is provided by FirstEnergy. The monthly electricity consumption from January 2022 to December 2023 is displayed in the Table and Figure below.

|     | Electric Usage (kWh) |           |           | Electric Usage Cost (\$) |          |          |
|-----|----------------------|-----------|-----------|--------------------------|----------|----------|
|     | 2022                 | 2023      | Average   | 2022                     | 2023     | Average  |
| Jan | 24,801.33            | 35,710.57 | 30,255.95 | 2,058.47                 | 2,963.97 | 2,511.22 |
| Feb | 28,247.33            | 29,391.97 | 28,819.65 | 2,344.53                 | 2,439.7  | 2,392.11 |
| Mar | 30,772.53            | 32,692.67 | 31,732.6  | 2,554.3                  | 2,713.67 | 2,633.99 |
| Apr | 30,595.6             | 34,841.6  | 32,718.6  | 2,539.8                  | 2,891.53 | 2,715.66 |
| May | 31,540.8             | 37,019.07 | 34,279.93 | 2,618.3                  | 3,072.8  | 2,845.55 |
| Jun | 41,635.07            | 41,264    | 41,449.54 | 3,455.87                 | 3,424.6  | 3,440.23 |
| Jul | 55,161               | 52,290    | 53,725.5  | 4,578.27                 | 4,340.2  | 4,459.24 |
| Aug | 57,258.33            | 49,958.77 | 53,608.55 | 4,752.67                 | 4,147.03 | 4,449.85 |

| Sep   | 59,106.6   | 56,120.37  | 57,613.49  | 4,905.6   | 4,658.13  | 4,781.86  |
|-------|------------|------------|------------|-----------|-----------|-----------|
| Oct   | 47,326.23  | 43,555.87  | 45,441.05  | 3,928.03  | 3,615.03  | 3,771.53  |
| Nov   | 37,405.5   | 31,781     | 34,593.25  | 3,104.5   | 2,638     | 2,871.25  |
| Dec   | 34,004.8   | 32,304     | 33,154.4   | 2,822     | 2,681     | 2,751.5   |
| Total | 477,855.12 | 476,929.89 | 477,392.51 | 39,662.34 | 39,585.66 | 39,623.99 |

#### Table: Monthly Electrical Consumption

**Electricity Consumption and Degree Days** 



Figure: Average Monthly Electrical Consumption and Monthly Degree Days

#### NATURAL GAS CONSUMPTION

Natural Gas at the City of Kent: Police Department is provided by Dominion.

|     | Natural Gas Usage (therms) |          |          | Natural Gas Usage Cost (\$) |          |         |
|-----|----------------------------|----------|----------|-----------------------------|----------|---------|
|     | 2022                       | 2023     | Average  | 2022                        | 2023     | Average |
| Jan | 1,033.27                   | 1,573    | 1,303.13 | 682                         | 1,038.47 | 860.24  |
| Feb | 1,441.73                   | 1,234.57 | 1,338.15 | 951.33                      | 815.1    | 883.22  |
| Mar | 1,191                      | 1,248.9  | 1,219.95 | 786.37                      | 823.7    | 805.04  |
| Apr | 844.1                      | 832.33   | 838.22   | 557.3                       | 549.4    | 553.35  |
| May | 540.1                      | 741.7    | 640.9    | 356.27                      | 489.6    | 422.94  |

| Jun   | 475.47   | 493.9     | 484.69    | 313.73   | 325.8    | 319.76   |
|-------|----------|-----------|-----------|----------|----------|----------|
| Jul   | 532      | 473.53    | 502.76    | 350.97   | 311.93   | 331.45   |
| Aug   | 542.93   | 525.4     | 534.16    | 358.43   | 346.8    | 352.62   |
| Sep   | 609.4    | 621.23    | 615.32    | 402.4    | 409.53   | 405.96   |
| Oct   | 619.33   | 681.83    | 650.58    | 408.2    | 449.73   | 428.97   |
| Nov   | 669.5    | 820       | 744.75    | 441.67   | 541      | 491.34   |
| Dec   | 1,247.77 | 1,100     | 1,173.88  | 823.27   | 726      | 774.63   |
| Total | 9,746.6  | 10,346.39 | 10,046.49 | 6,431.94 | 6,827.06 | 6,629.52 |

## **Table: Monthly Natural Gas Consumption**

Natural Gas Consumption and Degree Days



Figure: Monthly Natural Gas Consumption and Monthly Degree Days

#### UTILITY COSTS AND RATES

The energy cost savings calculations for the proposed ECMs are based on average annual electricity and natural gas costs for the period analyzed. For electricity and natural gas the blended rates will be used to determine the cost savings for ECM analysis.

Electricity Average Blended Rate: \$0.083 /kWh

Natural Gas Average Blended Rate: \$0.6599 /therms

### **Energy Use Intensity**

You are able track building energy efficiency Key Performance Indicators (KPI) such as Energy Use Intensity (EUI). Facility managers can benchmark their facilities against similar types of building throughout the country using the EUI. The Site EUI is calculated by taking the facility's total annual energy usage normalized to kBtu and the square footage of the building. Source EUI considers losses in generation, storage, and distribution of the fuel type.

The table below shows key performance indicators for the facility, including the Energy Use Index EUI and the Energy Cost Index (ECI) based on the utility data provided.

|         | Site EUI (kBtu/SqFt) | Total Cost Per Square Foot (\$/SqFt) |
|---------|----------------------|--------------------------------------|
| 2022    | 77.62                | 1.37                                 |
| 2023    | 79.32                | 1.38                                 |
| Average | 78.47                | 1.38                                 |

Table: Normalized KPI

### **Energy End Use Breakdown**

The table below outlines the energy end use breakdown of the City of Kent: Police Department into the end uses outlined by ASHRAE Standard 211/2018. This breakdown was estimated using data provided by the utilities, building operators/occupant interviews, and site visits.

\$92,507

**Utility Costs** 

End Use Breakdown by Fuel Type



#### Figure: Energy & Cost End-Use Breakdown by Fuel Type

| End Use              | Electric Usage<br>(kWh) | Natural Gas<br>Usage(therms) | Total Use<br>(kBtu) | Percentages |
|----------------------|-------------------------|------------------------------|---------------------|-------------|
| Space Heating        | 0                       | 3,724                        | 372,362             | 14.2%       |
| Space Cooling        | 88,736                  | -                            | 302,767             | 11.5%       |
| Air Distribution     | 127,018                 | -                            | 433,384             | 16%         |
| HW<br>Reheat/SHW/DHW | 0                       | 6,033                        | 603,320             | 22.9%       |
| Lighting             | 82,555                  | -                            | 281,678             | 10.7%       |
| Plug Load            | 132,000                 | -                            | 450,384             | 17.1%       |
| Water Distribution   | 58,065                  | -                            | 198,118             | 7.6%        |
| Total                | 488,374                 | 9,757                        | 2,642,013           | 100%        |
| Historical Billing   | 477,394                 | 10,047                       | 2,633,568           | -           |
| Actual               | 102%                    | 97%                          | 100%                | -           |

#### Table: Energy End-Use Breakdown

Electricity & Natural Gas End-Use Breakdown



#### Figure: Electricity End-Use Breakdown and Natural Gas End-Use Breakdown

End Use Breakdown by End Use



# **Summary of Energy Savings**

If all ECMs are implemented, the facility can expect to reduce electricity consumption 13%. This would produce an annual operational savings on the order of 61,815 kWh for \$7,419 of utility and O&M expenditure reduction. The full implementation cost of these projects is estimated at \$109,200, yielding a simple payback of 10.5 yrs. The following table depicts expected savings figures for this facility:

#### Natural Total Total Natural Existing Proposed Gas Electricit Gas Savings % Energy Energy Electricit (therms Consumptio Consumptio Reductio y Savings (therms End Use y (kWh) (kWh) n (kBtu) n (kBtu) Ν 0 3,724 0 0% Space Heating \_ 372,362 372,362 88,736 9,954 302,767 268,801 Space Cooling 11.2% \_ -Air Distribution 127,018 -4,840 -433,384 449,898 -3.8% -HW Reheat/SHW/DH W 0 0 6,033 0 603,320 603,320 0% 82,555 0 0% Lighting --281,678 281,678 Plug Load (Savings attributed to PV 450,384 installation) 132,000 56,700 256,924 43% --Water 58,065 0 198,118 198,118 0% Distribution --0 Total 488,374 61,815 9,757 2,642,013 2,431,100 8%

#### **ENERGY SAVINGS BY END USE**

#### Table: Energy Savings Breakdown by Usage



Figure: Energy Saving End-Use by Usage

# **Key Performance Indicators**

| Energy        | Electricity (kWh) | Natural Gas (therms) | Site EUI | Total GHG Emissions (mtCO2e) |
|---------------|-------------------|----------------------|----------|------------------------------|
| Baseline      | 488,374           | 9,757                | 78.72    | 415                          |
| Proposed      | 426,559           | 9,757                | 72.44    | 385                          |
| Reduction (%) | 12.66%            | 0%                   | 7.98%    | 7.23%                        |

Table: KPI



Site Energy Use Intensity

#### Figure: Site EUI Reduction

### **Total GHG Emissions**



Figure: GHG Reduction

# **Energy Conservation Measures (ECMs)**

### Variable Frequency Drives (VFD) - Pump

Re-establish the variable frequency drive control on hot water pumping. Application covered in this section are heating hot water pumps. Currently the 3 HP hot water pump is operating at 60 HZ (100 percent speed) continuously. This pump provides HW to serve the HVAC system and HW reheat. There is a VFD to control the variable HW pumping but the system is not varying the speed. A component of the HW system had to be replaced for maintenance, and it is possible that the system is overridden. Also, the differential pressure setpoint may be programmed and the system may not reach the setpoint. Re-instituting the use of the VFD control of the HW pumping will result in energy savings.

|                    | Energy<br>Savings | Electric<br>Savings | Natural Gas<br>Savings | Estimated GHG    | Effective<br>Useful Life |
|--------------------|-------------------|---------------------|------------------------|------------------|--------------------------|
| Name               | (kBtu)            | (kWh)               | (therms)               | Savings (mtCO2e) | (years)                  |
| Variable Frequency |                   |                     |                        |                  |                          |
| Drives (VFD) Pumps | 33,966            | 9,955               | -                      | 4.85             | -                        |

| Total Measure Cost (\$)  | 2,000 | ROI (%)  | 59.8  |
|--------------------------|-------|----------|-------|
| Annual Cost Savings (\$) | 1,195 | NPV (\$) | 8,682 |
| Simple Payback (yrs)     | 1.7   |          |       |

### Add Solar Photovoltaic (PV) System to Building

The building's roof would be a good candidate for a grid-tied solar PV system. Estimated square footage of the building's usable roof is 5000 square feet. With a typical coverage ratio of 90% and power output of 20 watts per square foot, a 51 kW system is achievable. A 51 kW system will produce around 56,700 kWh per year. PV systems are eligible for accelerated depreciation and a 30% Federal tax credit.

| Name                                                 | Energy  | Electric | Natural Gas | Estimated GHG | Effective   |
|------------------------------------------------------|---------|----------|-------------|---------------|-------------|
|                                                      | Savings | Savings  | Savings     | Savings       | Useful Life |
|                                                      | (kBtu)  | (kWh)    | (therms)    | (mtCO2e)      | (years)     |
| Add Solar<br>Photovoltaic (PV)<br>System to Building | 193,460 | 56,700   | -           | 27.63         | -           |

| Total Measure Cost (\$)  | 103,200 | Simple Payback (yrs) | 10.6    |
|--------------------------|---------|----------------------|---------|
| Estimated Incentive (\$) | 30,960  | ROI (%)              | 9.4     |
| Annual Cost Savings (\$) | 6,804   | NPV (\$)             | -11,394 |

### Add Air Purifier to Evidence Room

Facility personnel report that evidence room has ventilation issues that result in odors in the room.

Air Purifiers are often used for evidence rooms not only for the safety of the employees but also to preserve the evidence from decaying rapidly. Especially drugs like marijuana and mushrooms tend to mold quickly causing excessive off-gassing and loss of inventory. By using an air purifier in the evidence room or property storage room, the purifiers reduce odors and other harmful contaminants emitted from narcotics, marijuana, mold etc. protecting the health of the employees and creating a safer work environment. The addition of the air purifier is a net negative energy savings because the purifier system uses electric power.

It is also recommended that the existing HVAC system and controls should be verified to be being operated as designed. Appropriate/recommended air changes per hours should be maintained. The HVAC filter systems should be maintained regularly. The HVAC and exhaust evidence rooms were should be used to keep the space under negative pressure to prevent odors from escaping to other areas. It may also be advantageous to install CO2 sensors to maintain appropriate outside air supply. Dehumidification or humidity control may also help to reduce the odors in the room.

| Name                                    | Energy<br>Savings<br>(kBtu) | Electric<br>Savings<br>(kWh) | Natural Gas<br>Savings<br>(therms) | Estimated GHG<br>Savings (mtCO2e) | Effective<br>Useful Life<br>(years) |
|-----------------------------------------|-----------------------------|------------------------------|------------------------------------|-----------------------------------|-------------------------------------|
| Add Air Purifier<br>to Evidence<br>Room | -16,514                     | -4,840                       | -                                  | -2.36                             | -                                   |

| Total Measure Cost (\$)  | 4,000 | NPV (\$) | -9,193 |
|--------------------------|-------|----------|--------|
| Annual Cost Savings (\$) | -580  |          |        |

# Appendix

# Lighting Table

| Name    | Quantity | Location Name | Watts (W) | Control type |
|---------|----------|---------------|-----------|--------------|
| 30W LED | 234      | Various       | 30        | Automated    |
| 30W LED | 234      | Various       | 30        | Automated    |

## Definitions

| AHU   | Air Handling Unit                                    | OAT   | outside air<br>temperature             |
|-------|------------------------------------------------------|-------|----------------------------------------|
| Btu   | British thermal unit                                 | EUI   | Energy Use Intensity                   |
| Btu/h | British thermal unit per<br>hour                     | ECI   | Energy Cost Index                      |
| CDD   | Cooling Degree Days                                  | w     | watt                                   |
| DD    | Degree Days                                          | MMBtu | One million Btu                        |
| HDD   | Heating Degree Days                                  | kW    | kilowatt                               |
| cfm   | cubic feet per minute                                | kWh   | kilowatt-hour                          |
| CBECS | Commercial Buildings<br>Energy Consumption<br>Survey | KPI   | key performance<br>indicator           |
| DHW   | domestic hot water                                   | CO2e  | carbon dioxide<br>equivalent           |
| ECM   | energy conservation<br>measure                       | MBH   | 1,000 British thermal<br>unit per hour |
| gal   | gallon                                               | VFD   | Variable Frequency<br>drive            |
| GHG   | greenhouse gas                                       |       |                                        |
| gpm   | gallons per minute                                   |       |                                        |
| FY    | fiscal year                                          |       |                                        |
| hp    | motor horsepower                                     |       |                                        |
| AC    | air conditioner                                      |       |                                        |
| HV    | heating and ventilation                              |       |                                        |
| kBtu  | 1,000 Btu                                            |       |                                        |
| COP   | coefficient of<br>performance                        |       |                                        |
| EER   | energy efficiency ratio                              |       |                                        |
| нพ    | hot water                                            |       |                                        |
| FY    | fiscal year                                          |       |                                        |
| SF    | square feet                                          |       |                                        |